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Abstract—In this supplemental document, we first provide more details about the dataset and our image translation network
implementation (Section 1 and Section 2). Then, we provide perceptual user study details (Section 3). Finally, we show more results
(Section 4) including the complete quantitative results, and more visual results and comparisons in terms of style transfer and blending.
Particularly, we display all baseline comparisons in an interactive html viewer.

✦

ERRATA AND CHANGE LOG

Oct 27, 2022: During our code release after the paper
was published, we found some inconsistencies between
the description of the KL loss in the main text and the
implementation in the code. We therefore updated the main
manuscript to make it consistent with our implementation.
The changes include Eq.3, Fig.2, Fig.3 and the relevant
descriptions in Spatial Luminance KL Divergence Loss
definition and Ablation Study of geometry losses. We also
corrected the statistics of the dataset in Table 1 in the
supplementary. Particularly, the number of “unpaired imgs“
for blue styles is changed from 3,567 to 2,567, the total

“unpaired imgs“ from 16,908 to 15,908, and the total “training
set“ from 21,291 to 20,291.

1 DATASET DETAILS

Annotation Explanation. Here depicts the definition of the
four labels of magic times of the day for the dataset (i.e.,
daytime, golden hours, blue hours and night time), following
the same annotation settings as Shih et al.’s work [1].

Officially speaking, the golden hours occur just after
sunrise over the horizon or before sunset when the sun falls
closing to the horizon, creating the magical warm glow. The
blue hours appear shortly before sunrise and after sunset
with the sun’s position just below the horizon and produce
the cooler tones. In addition to these four time slots, there
are some hours worth photographing, such as civil, nautical,
and astronomical hours [2], which arrive between the blue
hour and nighttime. To covers all enchanting hours in a day
for style transfer, we simply merge blue, civil, nautical, and
hours as blue moments, astronomical and nighttime as night
hours.
Dataset Statistics and Visual Examples. Table 1 illustrates
the detailed statistics of our time-lapse architectural dataset.
The evaluation set is a separate unseen set for the training
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source / label day golden blue night total

training set 7,382 5,488 3,397 4,024 20,291
unpaired imgs 6,463 3,942 2,567 2,936 15,908
video frames 919 1,546 830 1,088 4,383

evaluation set 384 275 145 199 1,003

TABLE 1: Data statistics.

Fig. 1: Examples of photos in different time slots in a day:
daytime, golden hour, blue hour, and nighttime. Photos
by Unsplash users lisanto_12, bartmynameisbart,
lanceanderson, christopher__burns.

set, consisting of high-fidelity real-world photos from public
domains [3], [4], [5].

Some data and segmentation examples are shown in
Figure 1 and 2. From day to night, illumination sources
keep changing. In the daytime, the illumination of buildings
comes from the ambient environment, mainly the sky. When
the sun is falling and the sky is becoming dark, buildings
derive lighting sources from interior and exterior lights such
as buildings and street lights. Daytime images can always
provide sharp and detailed geometry of the scenes. In con-
trast, images in golden, blue, and night hours depict pleasing
and artistic joy in a day with mysterious chrominance and
texture variation. For instance, at dusk and dawn (golden
hours), the sky becomes yellowish-orange, and buildings are
coated with warm daylight; at night, buildings are lightened
with colorful glows or have inner gleaming lights on.

2 NETWORK IMPLEMENTATION DETAILS

This section describes details about the network architecture
and training settings in the image translation module.



Fig. 2: Examples of segmentation of an outdoor architec-
tural scene. Photos by Unsplash users jose_maria_sava,
michael75

2.1 Network Architecture

Our style transfer network consists of a content encoder Ec, a
content specific domain mapping M , a style encoder Es and
a generator G for each domain. The generator can transfer
style from source domain to target domain given source
content and target style representations. For two domains
X1 and X2, we train both transfer directions simultaneously,
i.e., from X1 to X2 and from X2 to X1.

The content encoder consists of three convolutional layers
for down-sampling, four residual blocks, one shared residual
block for both domains. A de-convolutional layer plus a
convolutional layer is used for domain mapping. Style
encoder is designed with five convolutional layers followed
by a global average pooling and a fully-connected layer. The
length of style latent code is 8. Our generator contains four
residual blocks, and 5 layers of upsample and convolutional
layers. Our multi-scale discriminator has four convolution
layers and one fully-connected layer on each scale. By default,
we set it on three scales. We use Leaky ReLU activation
for discriminator, the shared residual block in the content
encoder, and use ReLU for style encoder, content encoder(
except for the shared residual block), and generator except
for the last de-convolutional layer to which tangent activation
function is applied. We apply Instance Normalization (IN)
to the content encoder and all residual blocks, Adaptive
Instance Normalization (AdaIN) [6] to residual blocks in the
generator, and Layer Normalization to convolutional layers
in the generator.

Both foreground and background models use the same
network architecture.

We use similar annotation to [7], c7s1-64 stands for 7×7
convolutional block with 64 filters and stride 1, uk denotes
a 2 nearest-neighbor upsampling layer followed by a 5×5
convolutional block with k iterations and stride 1, rb, dc,
GAP, fc stands for residual block, de-convolutional layer,
global average pooling layer, and fully-connected layer.

Generation architecture details:

• Content encoder Ec: c7s1-64, c4s2-128, c4s2-128, rb3s1-
128 × 4, rb3s1-128 (shared)

• Domain mapping M : dc3s2-128, c4s2-128
• Style encoder Es: c7s1-64, c4s2-128, c4s2-256×3, GAP,

fc8
• Decoder G: rb3s1-128×4, u128, c5s1-2, u64, c5s1-2, c7s1-3

Discriminator D architecture details: c4s2-64, c4s2-128,
c4s2-256, c4s2-512, fc1

3 PERCEPTUAL STUDY DETAILS

Two surveys were conducted for perceptual study, in terms
of image photorealism, and structure similarity and style
consistency. Photorealism indicates how much the image
looks real as a photo. Structure similarity indicates how much
the scene in the generated image looks the same as the scene
in the input image. Style consistency indicates how accurate
the color styles are transferred semantic accordingly (i.e.
static foreground style to foreground, dynamic background
style to background).

There are 73 participants in our user study. The partic-
ipants are general audience with ages between 18 and 30.
Before the participants started to fill out the questionnaires,
they are required to read the brief introduction on style
transfer with examples.

In the first questionnaire, we prepared 3 images in
different target time slots (i.e., golden, blue hours, nighttime)
generated from each baseline and our approach, and from the
real world . In total there were (Ours) × 3 + 10 (baselines) ×
3 + (real-world) × 3 = 36 questions. As shown in Fig. 3, each
question contains one image, and participants are asked if
the displayed image is as realistic as a photograph. For each
question, the participants need to select an option among
”Yes”, ”No” and ”Not Sure” for the same question:

Q: ”Does this image look real?”
We accumulated the total number of each option and

calculated percentages among all options for each method or
the real-world group as the photorealism score. From result
of photorealism scores in the main paper, our generated
results look more realistic than other baselines.

Fig. 3: Example of Photorealism Questions.

In the second questionnaire, we conducted a perceptual
study via pairwise comparisons between all baselines and
ours in terms of structural preservation (i.e., generated
images have similar structure as the input image) and
color matching (i.e., generated images have similar style
to the reference image). For each baseline, we prepared 6
comparison pairs comprised of 3 time slots by 2 different
scenes. In total there were 10 (baselines) × 6 (comparison
pairs) = 60 pair-wise questions in this questionaire. As shown



in Fig. 4, each question contains an input image, a style image,
and two results from a baseline and our method respectively.
The participants are asked to select a better result (baseline’s
or ours) or an option of ”Not sure” for the question:

Q: ”Which image looks better for you in terms of
structural preservation (has similar structure as the
input image), color correctness (has similar style as the
style image)?”

Fig. 4: Example of Pairwise Comparisons. Comparison
between each baseline and our method in terms of structure
similarity and style consistency.

As can be seen in pairwise results in main paper, our
method outperforms the baselines, producing more natural
matched color transfer and better structure preservation.

After taking the surveys, participants were asked to give
reasons and feedback about their choices. We randomly
picked unselected results in second survey and asked the
participants to give reasons why they do not prefer these
images.

The major comments we received on deficient image
quality in the user study are summarized as follows:

• Some edges in the images were broken or distorted.
• Some smooth image areas were destroyed or removed.
• There is wrong sunlight direction (e.g., the sun is at the

backside of the building but the light reflection is at the
front side of the building).

From these feedbacks, humans concern much edge or
contour information and clear appearance for a photorealistic
image. People can easily perceive stereo geometry from an
image and illumination effect in real 3D world, which 2D-
based image approach is hard to realize. Taking lighting
direction into account for time-of-day style transfer can be
an interesting future work.

4 ADDITIONAL RESULTS

4.1 Metric Details
We describe the implementation of our metrics in the
following paragraphs. All metrics excluding IS are computed

for three types of style transfers, i.e., daytime to golden
hours, blue hours, and nighttime, and get average score. In
the main manuscript, we only report the mean score of three
style transfers. We supplement all results in Section 4.2.

Translation accuracy. InceptionV3 [16] classifier can
classify images to different classes (domains). Similar to
[10], we trained an InceptionV3 classification model with our
dataset for three classes (golden, blue and nighttime). Before
training, we extended the data scale by random cropping to
increase the accuracy. Accuracy rates of top-1 prediction by
the trained classifier for each translation are computed. High
accuracy indicates good style transfer to the target domain.

Quality Diversity. Inception score (IS) [17] measures how
realistic the generation is and how much variety of output
in an objective computation way. The trained InceptionV3
classifier with our dataset is used to calculate the IS score for
all generations (with three styles) by each method.

Geometry Similarity. To evaluate geometry similarity,
the typical differentiable structural similarity (SSIM) index
[18] estimates the structural similarity in terms of lumi-
nance, contrast and structure between two images. Thus
large luminance difference (e.g. day to night style transfer)
downgrades SSIM measurement of geometry preservation.
Instead of directly using SSIM, we calculate Edge Conditioned
SSIM (edge-SSIM). edge-SSIM computes image structural
similarity (SSIM) between Canny edge detected maps [19]
of images. It can well alleviates luminance influence on
geometry (e.g., comparison in Tab. 4). To get edge-SSIM,
we first obtain the edge map using Canny edge detection
function in OpenCV, and then calculate the SSIM between
input (daytime domain) and output (target domain) edge
maps using the image processing toolbox scikit-image in
Python.

Semantic Segmentation Accuracy. For segmentation,
IoU is the area of overlap divided by the area of union
between the predicted segmentation and the ground truth.
We compute IoU using the same pretrained segmentation
model mentioned in the main manuscript between all
generations and ground-truth daytime inputs. Then we get
average score for each style transfer. High IoU means that
generated images preserve good structure and recognizable
real-world style for architectural photos.

4.2 More Quantitative Results
Complete Quantitative Results
We supplement complete quantitative results for all style
translations, e.g., daytime to golden, blue and nighttime. The
complete metric evaluation results among baselines and ours
are displayed in Tables 2, 3, 4, complete evaluation results of
ablation study on geometry losses are shown in Table 6. Bold
texts are best results, underlined texts are second best results.
Table 5 illustrates the accuracy and IS of the evaluation set
for reference.

The traditional SSIM has unreasonable numbers in some
cases such as day-to-night style transfer with dramatic
luminance change (see SSIM in Fig. 4). Our edge-SSIM is
more robust and stresses the edge information for structure
similarity.

Overall, among image-to-image translation methods, MU-
NIT can retain primal input appearance (e.g., high edge-SSIM



DRIT++ [8], [9] MUNIT [7] FUNIT [10] DSMAP [11] StarGANv2 [12] AdaIN [6] SANet [13] AdaAttN [14] LST [15] Ours Ours-opt

SSIM↑ 0.6093 0.5224 0.4373 0.4552 0.3645 0.4730 0.5150 0.6538 0.4913 0.6371 0.7531
e-SSIM↑ 0.5563 0.5061 0.4934 0.4779 0.4794 0.4979 0.4988 0.5411 0.4938 0.6314 0.8200

Acc↑ 92.88% 87.62% 83.30% 94.61% 73.22% 83.07% 92.78% 80.39% 89.69% 96.27% 93.93%
IoU↑ 0.7182 0.7533 0.5047 0.4936 0.3591 0.6676 0.7278 0.6543 0.6170 0.7362 0.7911

TABLE 2: Evaluation results of Daytime to Golden Hour translation. Bold text indicates the best result; underlined text
indicates the 2nd best results.

DRIT++ [8], [9] MUNIT [7] FUNIT [10] DSMAP [11] StarGANv2 [12] AdaIN [6] SANet [13] AdaAttN [14] LST [15] Ours Ours-opt

SSIM↑ 0.4211 0.3188 0.3905 0.4484 0.3349 0.4381 0.4894 0.6324 0.4651 0.5735 0.6886
e-SSIM↑ 0.4881 0.5297 0.5010 0.5010 0.4767 0.5040 0.4924 0.5287 0.4974 0.6309 0.8106

Acc↑ 82.12% 84.13% 65.82% 82.96% 0.8378 64.05% 61.26% 46.80% 57.16% 91.13% 83.81%
IoU↑ 0.7011 0.7236 0.5470 0.5344 0.3794 0.6797 0.7254 0.6733 0.6473 0.7374 0.7915

TABLE 3: Evaluation results of Daytime to Blue Hour translation. Bold text indicates the best result; underlined text indicates
the 2nd best results.

DRIT++ [8], [9] MUNIT [7] FUNIT [10] DSMAP [11] StarGANv2 [12] AdaIN [6] SANet [13] AdaAttN [14] LST [15] Ours Ours-opt

SSIM↑ 0.0312 0.4598 0.2302 0.0919 0.1962 0.2761 0.4004 0.5063 0.3251 0.4027 0.4806
e-SSIM↑ 0.5198 0.6600 0.4932 0.4581 0.4774 0.4866 0.4649 0.4883 0.4796 0.6453 0.7975

Acc↑ 92.10% 88.60% 82.29% 95.61% 90.19% 83.27% 41.45% 53.70% 74.57% 97.16% 92.46%
IoU↑ 0.6553 0.7378 0.5902 0.4647 0.4915 0.6452 0.7017 0.6321 0.6150 0.7034 0.7318

TABLE 4: Evaluation results of Daytime to Nighttime translation. Bold text indicates the best result; underlined text indicates
the 2nd best results.

Acc-golden Acc-blue Acc-night Acc-mean IS

Eval 99.64% 98.62% 100% 99.42% 2.8340

TABLE 5: Accuracy and IS of evaluation as reference

w/o Lgd + Lkl w/o Lkl w/o Lgd Ltotal Ltotal(opt)

golden 0.4626 0.5502 0.5110 0.6314 0.8200
blue 0.4753 0.5394 0.5201 0.6309 0.8106
night 0.5020 0.5720 0.5165 0.6453 0.7975
mean 0.4800 0.5539 0.5159 0.6359 0.8094

TABLE 6: Ablation study with edge-SSIM metric (↑) on
geometry losses.

and IoU) but cannot transfer sufficient style in generated
images (e.g., low accuracy, low IS). DSMAP accomplishes
correct (high accuracy) and diverse style transfer (high IS),
but dramatically destroys original input geometry (low
edge-SSIM, low IoU and unrecognizable visual results).
StarGANv2 completely destroys original appearance (please
refer to the supplementary html viewer) with relatively low
edge-SSIM and IoU.

Neural style transfer approaches perform better on
golden-style image generation (high classification accuracy
for golden class), but fail to generate blue and night
stylized images (low accuracy). Particularly, the state-of-
the-art AdaAttN preserves more high-frequency geometry
information (high edge-SSIM) than other neural style transfer
methods but therefore somehow weakens its capability of
accurate style transfer (low accuracy). AdaIN has better style
transfer ability (high IS and high accuracy) but is bad at

content preservation. Only our method can generate outputs
with both high similarity of structure and appearance (high
edge-SSIM), and semantically correct and sufficient style
transfer (high IoU, accuracy, IS).

Running Time
Under training condition described in the main paper
(i.e., same workstation), training time of MUNIT, DRIT++,
DSMAP, StarGANv2 or Ours takes 2 to 3 days per model,
and FUNIT takes over 4 days. For neural style transfer
approaches, baseline models were trained for around 1 to 2
days.

To infer an image of 256×, all baselines and ours take
about 100ms to 200ms per image, and our image blending
optimization takes around 300ms per image with 1 or 2
iterations. Some WCT2 results are shown in the interactive
viewer and we use pretrained WCT2 model. By contrast,
WCT2 takes several seconds to predict an image of 256× or
doubles the time for an image of 512×.

4.3 More Qualitative Results
We show a complete visual comparison among different
baselines. Please refer to the supplementary interactive html
files to view the results.

Comparisons with I2I Translation Baselines
In the interactive viewer, we show comparison results among
DRIT++ ( [8], [9]), MUNIT [7], FUNIT [10], DSMAP [11], and
StarGANv2 [12]. FUNIT, DSMAP and StarGANv2 largely
distort the building structure and appearance while DRIT++,
MUNIT can somehow preserve the geometry, but do not



Fig. 5: Results of style interpolation.

always have correct corresponding semantic style mapping.
Ours keeps geometry information, also transfers sky style
and texture, and transfers correct foreground color similar
to reference style. Our blending optimized images recover
much geometry detail with little color loss.

Comparisons with Neural Style Transfer Baselines
State-of-the-art speedy neural style transfer methods
(AdaIN [6], SANet [13], LST [20], AdaAttN [14]) tend to
produce artistic effects with non-photorealistic texture and
strokes even if we trained them with higher content (or other
related) loss weight. Our results always tend to generate
more photorealistic stylized images.

WCT2 [21] takes much longer time at inference time (a few
seconds) compared to other baselines and ours. Since it takes
segmentation as input too, we use the same foreground and
background mask for both WCT2 and our method to achieve
fair comparison. From results, WCT2 perfectly preserves
both foreground and background geometry but tends to
transfer smooth color style for both segments. In general, the
transferred style of WCT2 is not as impressive as ours or
baselines’.

Stylization Diversity
Our models support style interpolation. We interpolate the
outputs between two given style references by interpolating
the style latent codes. The interpolation can generate smooth
style transition as shown in the Fig.5.

Fig.7 illustrates diverse style transfers given different style
references. Our method support stylization across different
architectural images and styles.

Comparisons of Blending and Harmonization Techniques
To validate the effectiveness of our blending optimization,
we show visual comparison of simple foreground and

(a) Copy and Paste (Ours) (b) Ours-opt

(c) DIB (bg) (d) DIB (fg)

(e) DIH(fg) (f) DIH(bg)

Fig. 6: Comparison to Blending and Harmonization Results.
Deep Image Blending (DIB) uses (a) as target, (c) uses
background image as source, (d) uses foreground as source.
(e) and (f) are two Deep Image Harmonization (DIH) results.
DIH is applied to Copy and Paste composite images shown in
top-right insets with according foreground and background
segmentation masks. Best view with zoom.

background addition Copy and Paste, our blending optimized
result, Deep Image Blending (DIB) [22] and Deep Image Harmo-
nization (DIH) [23] results in Figure 6. We used (a) Copy and
Paste result as target, foreground or background as source



for DIB and DIH (results in (c-d) and (e-f)). DIB tends to
blend target style to source to make whole style consistent,
which thus destroys original geometry or style. DIH changes
building color or sky color according to the background and
impair original transferred colors style (e.g., it brightens the
building in (e) or darkens the sky in (f)). Our optimization
approach (b) is able to refine geometry with original input
gradient and preserve transferred colors. Besides, DIB is slow
and our method is about 5× faster than DIB. On average DIB
takes 2m14s to blend an image while ours takes 0.27s. Our
blending optimization supports high resolution restoration
unlike other blending or harmonization approaches.
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Fig. 7: Results of diverse styles under same scenes. Input in first column.
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