

INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY 2022 August 1-3, Caltech, Pasadena

Time-of-Day Neural Style Transfer for Architectural Photographs

Yingshu Chen¹ Tuan-Anh Vu¹ Ka-Chun Shum¹ Binh-Son Hua² Sai-Kit Yeung¹

¹The Hong Kong University of Science and Technology ²VinAl Research

Artistic style transfer[1]

Domain translation[2]

Style Transfer

Examples from

[1] Huang and Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization", ICCV 2017.

[2] Chang et al., "Domain-specific mappings for generative adversarial style transfer", ECCV 2020.

• Architectural photography style transfer is challenging due to its special composition of dynamic sky and static foreground.

- Architectural photography style transfer is challenging due to its special composition of dynamic sky and static foreground.
- Generic <u>neural style transfer</u> and <u>image-to-image translation</u> treat the image as a single entity without knowing the foreground and background:
 - Destroy geometric features of the original architecture.
 - Lead to mismatched chrominance

[2] Huang and Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization", ICCV 2017.
[3] Chang et al., "Domain-specific mappings for generative adversarial style transfer", ECCV 2020.
Input images from <u>pexels.com</u>, <u>4147341</u> and <u>pikwizard</u>, <u>074a69d48e93c913aa718a929aea3b96</u>.
Style images from <u>unsplash.com</u>, <u>K4bvYKfXi3w</u> and by *Ed Lofdahl*.

- Architectural photography style transfer is challenging due to its special composition of dynamic sky and static foreground.
- Generic <u>neural style transfer</u> and <u>image-to-image translation</u> treat the image as a single entity without knowing the foreground and background:
 - Destroy geometric features of the original architecture.
 - Lead to mismatched chrominance

[1] Huang and Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization", ICCV 2017.
[2] Chang et al., "Domain-specific mappings for generative adversarial style transfer", ECCV 2020.
Input images from <u>pexels.com</u>, <u>4147341</u> and <u>pikwizard</u>, <u>074a69d48e93c913aa718a929aea3b96</u>.
Style images from <u>unsplash.com</u>, <u>K4bvYKfXi3w</u> and by *Ed Lofdahl*.

Problem Overview

- Architectural Photo Style Transfer:
 - Given an architectural photo and a style reference, we transfer styles of background and foreground separately while keeping foreground geometry intact.

- Overview
 - Architectural style transfer framework with three modules: segmentation, image translation and blending optimization.

- Step 1 Segmentation
 - Explicitly represent foreground and background of source and style images.

- Segmentation
 - Disentangle foreground and background for style transfer.
 - Foreground contains architecture, street, etc.
 - Background contains sky.
 - Use pretrained model (training stage) or manual labeling.

- Step 2 Image Translation
 - Train foreground and background translation models with different training hyperparameters according to their style transfer features.

- Step 2 Image Translation
 - Train foreground and background translation models with different training hyperparameters according to their style transfer features.

- Image Translation
- Bidirectional image-to-image translation for unpaired data.
- Reconstruction, cycle-• consistency, adversarial losses.

[2] Chang et al. "Domain-specific mappings for generative adversarial style transfer", ECCV 2020. Input image from pikwizard, 074a69d48e93c913aa718a929aea3b96.

- Image Translation
- Bidirectional image-to-image translation for unpaired data.
- Reconstruction, cycle-•
- High-frequency geometry preservation.

- Image Translation
- Bidirectional image-to-image translation for unpaired data.
- Reconstruction, cycleconsistency, adversarial losses.
- High-frequency geometry preservation.

High-frequency geometry losses:

• Image Gradient loss: $\mathcal{L}_{gd} = \mathbb{E}_{x_1, x_2} [\|\nabla(Y(x_{1 \to 2}) - \nabla(Y(x_1))\|_1]$ • Spatial luminance KL loss: $\mathcal{L}_{kl} = \mathbb{E}_{x_1, x_2} [KL(Y(x_{1 \to 2}) \| Y(x_1))]$ * $Y(\cdot)$ is luminance channel.

Style foreground

- Image Translation
- Bidirectional image-to-image translation for unpaired data.
- Reconstruction, cycleconsistency, adversarial losses.
- High-frequency geometry preservation.

High-frequency geometry losses:

• Image Gradient loss: $\mathcal{L}_{gd} = \mathbb{E}_{x_1, x_2} [\|\nabla(Y(x_{1 \to 2}) - \nabla(Y(x_1))\|_1]$ • Spatial luminance KL loss: $\mathcal{L}_{kl} = \mathbb{E}_{x_1, x_2} [KL(Y(x_{1 \to 2}) \| Y(x_1))]$ * $Y(\cdot)$ is luminance channel.

- Step 3 Blending Optimization
 - With input high-resolution source geometry information, we optimize blended results with perfect gradient information.

- Blending Optimization
 - Restore high-fidelity gradient information of input content.
 - Optional: new background sky texture gradient.

[4] Wu et al., "GP-GAN: Towards realistic high-resolution image blending," ACMMM 2019. Source image by David Spender.

Dataset

- Unpaired dataset from the Internet and time-lapse video frames.
- 21,000 architectural photos for training.
- 1,000 photos for evaluation.
- 4 labels for time-of-day styles: *day, golden, blue, night,* with diverse styles of architectures and sky.

- Ablation study
 - Segmentation

	e-SSIM↑	Acc↑	IS↑	IoU↑
Ours-whole	0.6838	0.8282	2.5240	0.7410
Ours	0.6359	0.9486	2.7290	0.7257

Ours-whole: our translation model trained with whole images.

Input source and style reference

Ours with segmentation

- Ablation study
 - Geometry Losses

	w/o $\mathcal{L}_{kl} + \mathcal{L}_{gd}$	w/o \mathcal{L}_{kl}	w/o \mathcal{L}_{gd}	$\mid \mathcal{L}_{total}$
e-SSIM↑	0.4800	0.5539	0.5159	0.6359
Acc↑	0.8934	0.9201	0.9265	0.9486
$\mathrm{IS}\uparrow$	2.6858	2.7183	2.7241	2.7290
IoU↑	0.6056	0.6536	0.6612	0.7257

Input source and style reference

- Ablation study
 - Blending Optimization

	e-SSIM↑	Acc↑	IS↑	IoU↑
Ours	0.6359	0.9486	2.7290	0.7257
Ours-opt	0.8094	0.9007	2.6127	0.7715

Ours (or Ours-opt): our translation models trained with segmented images.

Input source and style reference

Input image from <u>pikwizard,81dde04c1a0a2ac3f3682d680f2374bf</u>. Style image from <u>pexels,almudena-cathedral-madrid-423932</u>. *e-SSIM: SSIM on image edges

	image-to-image translation				generic neural style transfer					
	DRIT++	MUNIT	FUNIT	DSMAP	StarGANv2	AdaIN	SANet	AdaAttN	LST	Ours
e-SSIM↑	0.5214	<u>0.5653</u>	0.4959	0.4790	0.4778	0.4962	0.4854	0.5194	0.4903	0.6359
Acc↑	0.8903	0.8678	0.77.14	<u>0.9106</u>	0.8788	0.7352	0.6193	0.6443	0.7071	0.9486
$\mathrm{IS}\uparrow$	2.6160	2.5916	2.5903	2.6580	2.6088	2.4082	2.1062	2.0928	1.7299	2.7290
IoU↑	0.6915	0.7382	0.5473	0.4975	0.4100	0.6642	0.7183	0.6532	0.6264	0.7257

Comparison to image-to-image translation methods

Input

Input image from <u>pikwizard, 074a69d48e93c913aa718a929aea3b96</u>. Style images from <u>pexels.com,buildings-under-cloudy-sky-during-sunset-462331</u>, by *Ed Lofdahl* and <u>pexels,almudena-cathedral-madrid-423932</u>.

Style references

Comparison to image-to-image translation methods

MUNIT

Huang et al., "Multimodal unsupervised image-to-image translation," ECCV 2018. Style images from <u>pexels.com,buildings-under-cloudy-sky-during-sunset-462331</u>, by *Ed Lofdahl* and <u>pexels,almudena-cathedral-madrid-423932</u>.

Comparison to image-to-image translation methods

DSMAP

Chang et al., "Domain-specific mappings for generative adversarial style transfer," ECCV 2020. Style images from <u>pexels.com,buildings-under-cloudy-sky-during-sunset-462331</u>, by *Ed Lofdahl* and <u>pexels,almudena-cathedral-madrid-423932</u>.

Style references

Comparison to image-to-image translation methods

Ours

Style images from pexels.com, buildings-under-cloudy-sky-during-sunset-462331, by Ed Lofdahl and pexels, almudena-cathedral-madrid-423932.

Style references

Comparison to image-to-image translation methods

Ours-Opt

Style images from pexels.com, buildings-under-cloudy-sky-during-sunset-462331, by Ed Lofdahl and pexels, almudena-cathedral-madrid-423932.

Comparison to neural style transfer methods

Input

Input image from unsplash.com, Ncmd8uLe8H0.

Style images from unsplash.com, 50mwAMDxmkU, unsplash.com, K4bvYKfXi3w, pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/.

Comparison to neural style transfer methods

AdaIN

Huang and Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization," ICCV 2017. Style images from <u>unsplash.com, 5omwAMDxmkU</u>, <u>unsplash.com, K4bvYKfXi3w</u>, <u>pexels.com</u>, <u>city-skyline-across-body-of-water-during-night-time-3586966/</u>.

Comparison to neural style transfer methods

AdaAttN

Liu et al., "AdaAttN: Revisit attention mechanism in arbitrary neural style transfer," ICCV 2021. Style images from <u>unsplash.com, 5omwAMDxmkU</u>, <u>unsplash.com, K4bvYKfXi3w</u>, <u>pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/</u>.

Comparison to neural style transfer methods

Comparison to neural style transfer methods

Ours-Opt

More Results

More Results

More Results

Contribution

- 1) A new problem setting for style transfer: **photorealistic style transfer for architectural photographs** of different times of day.
- 2) An image-to-image translation neural network with disentanglement representation that separately **considers style transfer for image foreground and background respectively**, accompanied with simple but effective **geometry losses** designed for image content preservation.
- 3) A **new dataset of architectural photographs** and an extensive benchmark for architectural style transfer.

INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY 2022 August 1-3, Caltech, Pasadena

Time-of-Day Neural Style Transfer for Architectural Photographs

Yingshu Chen¹ Tuan-Anh Vu¹ Ka-Chun Shum¹ Binh-Son Hua² Sai-Kit Yeung¹ ¹The Hong Kong University of Science and Technology ²VinAl Research

