Time-of-Day Neural Style Transfer for Architectural Photographs

Yingshu Chen1 Tuan-Anh Vu1 Ka-Chun Shum1 Binh-Son Hua2 Sai-Kit Yeung1

1The Hong Kong University of Science and Technology \quad 2VinAI Research
Motivation

Architectural photography style transfer is challenging due to its special composition of dynamic sky and static foreground.

Generic neural style transfer and image-to-image translation treat the image as a single entity without knowing the foreground and background, leading to mismatched chrominance and destroyed geometric features of the original architecture.

Examples from
Motivation

• **Architectural photography style transfer** is challenging due to its special composition of dynamic sky and static foreground.

Motivation

• **Architectural photography style transfer** is challenging due to its special composition of dynamic sky and static foreground.

• Generic neural style transfer and image-to-image translation treat the image as a single entity without knowing the foreground and background:
 • Destroy geometric features of the original architecture.
 • Lead to mismatched chrominance.

Input images from pexels.com, 4147341 and pikwizard, 074a69d48e93c913aa718a929aea3b96.
Style images from unsplash.com, K4bvYKfXi3w and by Ed Lofdahl.
Motivation

• **Architectural photography style transfer** is challenging due to its special composition of dynamic sky and static foreground.

• Generic neural style transfer and image-to-image translation treat the image as a single entity without knowing the foreground and background:
 • Destroy geometric features of the original architecture.
 • Lead to mismatched chrominance.

Input images from pexels.com, 4147341 and pikwizard, 074a69d48e93c913aa718a929aea3b96.
Style images from unsplash.com, K4bvYKfXi3w and by Ed Lofdahl.
Problem Overview

• Architectural Photo Style Transfer:
 • Given an architectural photo and a style reference, we transfer styles of background and foreground separately while keeping foreground geometry intact.

Input images from unsplash.com, Ncmd8uLe8HQ and unsplash.com, 5omwAMDxmkJU.
Methodology

• Overview
 • Architectural style transfer framework with three modules: segmentation, image translation and blending optimization.

Input background / foreground

Input (source) $x_1 \in X_1$

Style (target) $x_2 \in X_2$

Segmentation

Image Translation

Translated background / foreground

Alpha blending

Blending Optimization

Output

Image Gradient Loss
Spatial Luminance KL Loss
Methodology

• Step 1 - Segmentation
 • Explicitly represent foreground and background of source and style images.
Methodology

• Segmentation
 • Disentangle foreground and background for style transfer.
 • Foreground contains architecture, street, etc.
 • Background contains sky.
 • Use pretrained model (training stage) or manual labeling.
Methodology

• Step 2 – Image Translation
 • Train foreground and background translation models with different training hyperparameters according to their style transfer features.
Methodology

• Step 2 – Image Translation
 • Train foreground and background translation models with different training hyperparameters according to their style transfer features.
Methodology

• Image Translation
 • Bidirectional image-to-image translation for unpaired data.
 • Reconstruction, cycle-consistency, adversarial losses.

Fail to preserve primal geometry

Input image from pikwizard, 074a69d48e93c913aa718a9e3b96.
Methodology

- Image Translation
 - Bidirectional image-to-image translation for unpaired data.
 - Reconstruction, cycle-consistency, adversarial losses.
 - High-frequency geometry preservation.

\[
\begin{align*}
 &\text{Style} \quad E_s^1 \quad \text{Generator} \quad G_1 \quad \text{Discriminator} \quad D_1 \\
 &\text{Content} \quad E_c^1 \quad z_1 \quad \text{Generator} \quad G_2 \quad \text{Discriminator} \quad D_2 \\
 &\text{Style} \quad E_s^2 \\
 &\text{Content} \quad E_c^2 \\

\end{align*}
\]

Input image from pikwizard, 074a69d48e93c913aa718a929aea3b96.
Methodology

- Image Translation
- Bidirectional image-to-image translation for unpaired data.
- Reconstruction, cycle-consistency, adversarial losses.
- High-frequency geometry preservation.

High-frequency geometry losses:
- Image Gradient loss:
 \[\mathcal{L}_{gd} = \mathbb{E}_{x_1,x_2} [\| \nabla(Y(x_{1\rightarrow2}) - \nabla(Y(x_1)) \|_1] \]
- Spatial luminance KL loss:
 \[\mathcal{L}_{kl} = \mathbb{E}_{x_1,x_2} [KL(Y(x_{1\rightarrow2})\|Y(x_1))] \]

*\(Y(\cdot)\) is luminance channel.
Methodology

- **Image Translation**
 - Bidirectional image-to-image translation for unpaired data.
- Reconstruction, cycle-consistency, adversarial losses.
- High-frequency geometry preservation.

High-frequency geometry losses:

- **Image Gradient loss:**
 \[\mathcal{L}_{gd} = \mathbb{E}_{x_1, x_2} [||\nabla(Y(x_{1\rightarrow2}) - \nabla(Y(x_1))||_1] \]
- **Spatial luminance KL loss:**
 \[\mathcal{L}_{kl} = \mathbb{E}_{x_1, x_2} [KL(Y(x_{1\rightarrow2}) || Y(x_1))] \]

\(Y(\cdot) \) is luminance channel.
Methodology

• Step 3 – Blending Optimization
 • With input high-resolution source geometry information, we optimize blended results with perfect gradient information.

Input (source) $x_1 \in X_1$

Input background / foreground

Segmentation

Style (target) $x_2 \in X_2$

Style background / foreground

Translated background / foreground

Blending Optimization

Image Translation

Output

High-res perfect geometry

Image Gradient Loss

Spatial Luminance KL Loss

Alpha blending

$X_1 \rightarrow X_2$
Methodology

• Blending Optimization
 • Restore high-fidelity gradient information of input content.
 • Optional: new background sky texture gradient.

Source image by David Spender.
Dataset

- Unpaired dataset from the Internet and time-lapse video frames.
- 21,000 architectural photos for training.
- 1,000 photos for evaluation.
- 4 labels for time-of-day styles: *day, golden, blue, night*, with diverse styles of architectures and sky.

Photos by Unsplash users *lisanto_12, bartmynameisbart, lanceanderson, christopher__burns*.
Experiments

- Ablation study
 - Segmentation

<table>
<thead>
<tr>
<th></th>
<th>e-SSIM↑</th>
<th>Acc↑</th>
<th>IS↑</th>
<th>IoU↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours-whole</td>
<td>0.6838</td>
<td>0.8282</td>
<td>2.5240</td>
<td>0.7410</td>
</tr>
<tr>
<td>Ours</td>
<td>0.6359</td>
<td>0.9486</td>
<td>2.7290</td>
<td>0.7257</td>
</tr>
</tbody>
</table>

Ours-whole: our translation model trained with whole images.

Input source and style reference

Ours without segmentation

Ours with segmentation

Input image from unsplash.com, Zr-ZnTNekEY. Style image from unsplash.com, sw_ePW1sYnU.

*e-SSIM: SSIM on image edges.
Experiments

• Ablation study
 • Geometry Losses

\[\mathcal{L}_{kl} \]: spatial luminance KL loss.
\[\mathcal{L}_{gd} \]: image gradient loss.
\[\mathcal{L}_{total} \]: all losses.

<table>
<thead>
<tr>
<th></th>
<th>w/o (\mathcal{L}{kl} + \mathcal{L}{gd})</th>
<th>w/o (\mathcal{L}_{kl})</th>
<th>w/o (\mathcal{L}_{gd})</th>
<th>(\mathcal{L}_{total})</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-SSIM(\uparrow)</td>
<td>0.4800</td>
<td>0.5539</td>
<td>0.5159</td>
<td>0.6359</td>
</tr>
<tr>
<td>Acc(\uparrow)</td>
<td>0.8934</td>
<td>0.9201</td>
<td>0.9265</td>
<td>0.9486</td>
</tr>
<tr>
<td>IS(\uparrow)</td>
<td>2.6858</td>
<td>2.7183</td>
<td>2.7214</td>
<td>2.7290</td>
</tr>
<tr>
<td>IoU(\uparrow)</td>
<td>0.6056</td>
<td>0.6536</td>
<td>0.6612</td>
<td>0.7257</td>
</tr>
</tbody>
</table>

Only taking foreground as an example. Original image from unsplash.3onN7CKCrH8.

*e-SSIM: SSIM on image edges.
Experiments

• Ablation study
 • Blending Optimization

Ours (or Ours-opt): our translation models trained with segmented images.

<table>
<thead>
<tr>
<th></th>
<th>e-SSIM↑</th>
<th>Acc↑</th>
<th>IS↑</th>
<th>IoU↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>0.6359</td>
<td>0.9486</td>
<td>2.7290</td>
<td>0.7257</td>
</tr>
<tr>
<td>Ours-opt</td>
<td>0.8094</td>
<td>0.9007</td>
<td>2.6127</td>
<td>0.7715</td>
</tr>
</tbody>
</table>

Input image from pikwizard.81dde04c1a0a2ac3f3682d680f2374bf. Style image from pexels.almudena-cathedral-madrid-423932.

*e-SSIM: SSIM on image edges
Experiments

image-to-image translation

<table>
<thead>
<tr>
<th></th>
<th>DRIT++</th>
<th>MUNIT</th>
<th>FUNIT</th>
<th>DSMAP</th>
<th>StarGANv2</th>
<th>AdaIN</th>
<th>SANet</th>
<th>AdaAttN</th>
<th>LST</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-SSIM↑</td>
<td>0.5214</td>
<td>0.5653</td>
<td>0.4959</td>
<td>0.4790</td>
<td>0.4778</td>
<td>0.4962</td>
<td>0.4854</td>
<td>0.5194</td>
<td>0.4903</td>
<td>0.6359</td>
</tr>
<tr>
<td>Acc↑</td>
<td>0.8903</td>
<td>0.8678</td>
<td>0.7714</td>
<td>0.9106</td>
<td>0.8788</td>
<td>0.7352</td>
<td>0.6193</td>
<td>0.6443</td>
<td>0.7071</td>
<td>0.9486</td>
</tr>
<tr>
<td>IS↑</td>
<td>2.6160</td>
<td>2.5916</td>
<td>2.5903</td>
<td>2.6580</td>
<td>2.6088</td>
<td>2.4082</td>
<td>2.1062</td>
<td>2.0928</td>
<td>1.7299</td>
<td>2.7290</td>
</tr>
<tr>
<td>IoU↑</td>
<td>0.6915</td>
<td>0.7382</td>
<td>0.5473</td>
<td>0.4975</td>
<td>0.4100</td>
<td>0.6642</td>
<td>0.7183</td>
<td>0.6532</td>
<td>0.6264</td>
<td>0.7257</td>
</tr>
</tbody>
</table>

generic neural style transfer

Photorealism

<table>
<thead>
<tr>
<th></th>
<th>Real</th>
<th>Fake</th>
<th>Not Sure</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td>89.47</td>
<td>64.91</td>
<td>52.63</td>
</tr>
<tr>
<td>Ours</td>
<td>73.68</td>
<td>82.46</td>
<td>63.22</td>
</tr>
<tr>
<td>DRIT++</td>
<td>12.28</td>
<td>5.75</td>
<td>3.45</td>
</tr>
<tr>
<td>MUNIT</td>
<td>14.04</td>
<td>6.72</td>
<td>3.45</td>
</tr>
<tr>
<td>FUNIT</td>
<td>5.26</td>
<td>5.75</td>
<td>3.45</td>
</tr>
<tr>
<td>DSMAP</td>
<td>10.53</td>
<td>47.36</td>
<td>3.45</td>
</tr>
<tr>
<td>StarGANv2</td>
<td>11.15</td>
<td>11.15</td>
<td>11.15</td>
</tr>
</tbody>
</table>

Structure & Style

<table>
<thead>
<tr>
<th></th>
<th>Ours vs DRIT++</th>
<th>Ours vs MUNIT</th>
<th>Ours vs FUNIT</th>
<th>Ours vs DSMAP</th>
<th>Ours vs StarGANv2</th>
<th>Ours vs AdaIN</th>
<th>Ours vs SANet</th>
<th>Ours vs AdaAttN</th>
<th>Ours vs LST</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td>70.83</td>
<td>65.28</td>
<td>72.22</td>
<td>90.28</td>
<td>84.48</td>
<td>89.66</td>
<td>83.91</td>
<td>87.36</td>
<td>91.38</td>
</tr>
</tbody>
</table>

22
Experiments

Comparison to image-to-image translation methods

Input image from pikwizard, 074a69d48e93c913aa718a929ae3b96. Style images from pexels.com,buildings-under-cloudy-sky-during-sunset-462331, by Ed Lofdahl and pexels,almudena-cathedral-madrid-423932.
Experiments

Comparison to image-to-image translation methods

Style references

Ours-Opt

Experiments

Comparison to neural style transfer methods

Input

Style references

Input image from unsplash.com, Ncmd8uLe8H0.
Style images from unsplash.com, 5omwAMDxmU, unsplash.com, K4bvYkFxi3w, pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/.
Experiments

Comparison to neural style transfer methods

Style images from unsplash.com, SomwAMDxmkU, unsplash.com, K4bvYKfXi3w, pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/.
Experiments

Comparison to neural style transfer methods

Style images from unsplash.com, SomwAMDxmkU, unsplash.com, K4bvYKfX3w, pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/.
Experiments

Comparison to neural style transfer methods

Style references

Style images from unsplash.com, SomwAMDxmkU, unsplash.com, K4bvYKfXi3w, pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/.

Ours
Experiments

Comparison to neural style transfer methods

Style references

Ours-Opt

Style images from unsplash.com, SomwAMDxmkU, unsplash.com, K4bYKfXi3w, pexels.com, city-skyline-across-body-of-water-during-night-time-3586966/.
More Results

Input image from pexels.com, 4147341. Style image from unsplash.com, 5omwAMDxmkU.
More Results

Input image from pexels.com, 4147341. Style image from unsplash.com, K4bvYkFXi3w.
More Results

Contribution

1) A new problem setting for style transfer: **photorealistic style transfer for architectural photographs** of different times of day.

2) An image-to-image translation neural network with disentanglement representation that separately **considers style transfer for image foreground and background respectively**, accompanied with simple but effective **geometry losses** designed for image content preservation.

3) A **new dataset of architectural photographs** and an extensive benchmark for architectural style transfer.
Time-of-Day Neural Style Transfer for Architectural Photographs

Yingshu Chen¹ Tuan-Anh Vu¹ Ka-Chun Shum¹
Binh-Son Hua² Sai-Kit Yeung¹
¹The Hong Kong University of Science and Technology
²VinAI Research